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The nonlinear stability of the channel flow of fluid with temperature-dependent
viscosity is considered for the case of vanishing Péclet number for two viscosity
models, µ(T ), which vary monotonically with temperature, T . In each case the basic
state is found to lose stability from the linear critical point in a subcritical Hopf
bifurcation. We find two-dimensional nonlinear time-periodic flows that arise from
these bifurcations. The disturbance to the basic flow has wavy streamlines meandering
between a sequence of triangular-shaped vortices, with this pattern skewing towards
the channel wall which the basic flow skews towards. For each of these secondary
flows we identify a nonlinear critical Reynolds number (based on half-channel width
and viscosity at one of the fixed wall temperatures) which represents the minimum
Reynolds number at which a secondary flow may exist. In contrast to the results
for the linear critical Reynolds number, the precise form of µ(T ) is not found to be
qualitatively important in determining the stability of the thermal flow relative to the
isothermal flow. For the viscosity models considered here, we find that the secondary
flow is destabilized relative to the corresponding isothermal flow when µ(T ) decreases
and vice versa. However, if we remove the bulk effect of the non-uniform change in
viscosity by introducing a Reynolds number based on average viscosity, it is found
that the form of µ(T ) is important in determining whether the thermal secondary flow
is stabilized or destabilized relative to the corresponding isothermal flow. We also
consider the linear stability of the secondary flows and find that the most unstable
modes are either superharmonic or subharmonic. All secondary disturbance modes
are ultimately damped as the Floquet parameter in the spanwise direction increases,
and the last mode to be damped is always a phase-locked subharmonic mode. None
of the secondary flows is found to be stable to all secondary disturbance modes.
Possible bifurcation points for tertiary flows are also identified.

1. Introduction
An early study of the linear stability of channel flow of fluid with temperature-

dependent viscosity was performed by Potter & Graber (1972). They used a particular
viscosity model relevant to water for which viscosity decreases as temperature in-
creases. Having neglected any disturbance to the basic-state temperature distribution
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they obtained a modified fourth-order Orr–Sommerfeld equation. Upon fixing the
temperature at the channel walls their numerical results indicated that the thermal
effects introduced through a temperature-dependent viscosity destabilized the flow in
the sense that the critical Reynolds number, Rc, decreased. Schäfer & Herwig (1993)
considered an asymptotic solution to the general problem of the linear stability of
channel flow of fluid with temperature-dependent viscosity in the limit of a small
non-dimensional viscosity gradient with respect to temperature, K0. Their numerical
results for the problem of fixed channel wall temperatures indicated a monotonic
decreasing relationship of Rc with K0. Recently Wall & Wilson (1996) re-examined
the linear stability of these channel flows for four different viscosity models but, in
contrast to Potter & Graber (1972), they did not neglect perturbations to temperature,
while in contrast to Schäfer & Herwig (1993), they did not assume K0 to be small.
Their results indicated that the physical instability mechanism of the thermal flows
is similar to that of (isothermal) plane Poiseuille flow in the sense that the Reynolds
stresses were found to peak close to the location of the critical layers, with however
the layer in the half of the channel into which the basic flow had skewed being
relatively more important in the process of energy transfer from the basic flow to the
disturbance. Wall & Wilson (1996) found some perhaps unexpected results when com-
paring the behaviour of Rc between the different viscosity models. For example, using
a Reynolds number based on viscosity at one of the walls, half-channel width and a
velocity scale proportional to an imposed pressure gradient, they found the situation
where one flow whose viscosity monotonically decreases across the channel is arbi-
trarily destabilized by heating whereas another flow whose viscosity monotonically
decreases across the channel is found to be arbitrarily stabilized by heating.

The linear stability results for isothermal plane Poiseuille flow have been ex-
perimentally verified by Nishioka, Iida & Ichikawa (1975), and more recently by
Elofsson & Alfredsson (1998). In more noisy experiments the value of Rc is con-
siderably reduced, for example Davies & White (1928) found instability for R as
low as 1000. Nishioka, Iida & Kanbayashi (1978) experimentally investigated the
application of two-dimensional finite-amplitude disturbances to plane Poiseuille flow
with the result of producing a rapid growth of three-dimensional spanwise structures
in the flow similar to those observed by Klebanoff, Tidstrom & Sargent (1962) in
boundary-layer flow. Kozlov & Ramazanov (1984) observed a similar development of
three-dimensional subharmonic disturbances from two-dimensional finite-amplitude
waves. Direct numerical solutions of the time-dependent Navier–Stokes equations,
for example those by Orszag & Kells (1980) or Rozhdestvensky & Simakin (1984),
exhibit a similar secondary growth of three-dimensional disturbances to that observed
in these experiments. The present study of the thermal problem will instead consider
the transition process in terms of a sequence of bifurcations of the basic flow, that is
we shall perform a global numerical bifurcation analysis.

An early investigation of the flows bifurcating from plane Poiseuille flow was the
‘weakly’ nonlinear study performed by Meksyn & Stuart (1951). They considered a
small-amplitude disturbance including a modification to the mean flow, but neglected
harmonics of the fundamental disturbance. They found that a threshold amplitude
existed for subcritical values of R. A subsequent numerical investigation by Grohne
(1969) indicated that this approach yielded a nonlinear minimum R of 2500. Meksyn
(1964) subsequently generalized the study of Meksyn & Stuart (1951) to include
three-dimensional disturbances. Stuart’s (1960) and Watson’s (1960) weakly nonlinear
approach again considered a small-amplitude expansion valid in the neighbourhood of
a linear marginal point but, in contrast to Meksyn & Stuart (1951), included harmonics
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of the fundamental oscillation. This approach led to the formal derivation of Landau’s
equation for parallel shear flows. Pekeris & Shkoller (1969) subsequently found
numerical solutions for the appropriate Landau coefficients and found supercritical
solutions to bifurcate from a section of the lower branch of the marginal curve and
subcritical solutions to bifurcate from the rest of the marginal curve including the
critical point. Herbert (1983) produced a rational method for uniquely determining
the higher-order amplitude coefficients of Landau’s equation and improved the region
of validity of previous weakly nonlinear approaches. However, it is the contention of
Ehrenstein & Koch (1991) that the main value of these weakly nonlinear studies is
to provide accurate information in a neighbourhood of the bifurcation point.

With the advent of more powerful numerical techniques (in particular spectral and
pseudospectral methods) and computing facilities, strongly nonlinear studies became
more feasible. Pugh & Saffman (1988), Orszag & Patera (1980) and Herbert (1981)
established that the rapid growth of three-dimensional waves observed in the ex-
perimental studies is due to the linear secondary instability of the two-dimensional
finite-amplitude equilibria above a threshold amplitude. Using quasi-equilibria non-
linear solutions Orszag & Patera (1983) found a reduction of the minimum nonlinear
R to 1000, although later Pugh & Saffman (1988) showed that the assumption made
in the former study of a change in stability at the turning point of the nonlinear
bifurcation branch is an oversimplification (although a neutral eigenvalue will always
exist there). A summary of these studies may be found in Bayly, Orszag & Herbert
(1988). More recently Ehrenstein & Koch (1989, 1991) have computed families of
three-dimensional finite-amplitude secondary bifurcation solutions originating from
multiple bifurcation points at the coincidence of two or more neutral phase-locked
solutions which lead to a smaller nonlinear critical R. They also computed nonlinear
three-dimensional primary bifurcation solutions which did not, however, lead to a
reduction in nonlinear critical R compared to two-dimensional primary bifurcations.

The present nonlinear study was undertaken to provide insight into the channel
flows of fluid with temperature-dependent viscosity that may be observed in practice
and to more fully understand the differences in linear stability results between different
viscosity models that were found by Wall & Wilson (1996). With the introduction of
thermal effects through a temperature-dependent viscosity this investigation therefore
extends previous numerical bifurcation studies of channel flow. In § 2 we introduce the
governing equations for this problem, present the basic states and derive the pertur-
bation equations for the primary bifurcation solutions. We recover the linear stability
problem by omitting the nonlinear terms from these equations. In § 3 we review the
linear stability problem, while in § 4 we proceed to calculate the two-dimensional
nonlinear equilibrium solutions for two viscosity/temperature relationships. In most
cases we consider solutions which bifurcate from the linear critical point. In § 5 we
derive the perturbation equations for the secondary bifurcation solutions, and present
results for the three-dimensional linear stability of the secondary flows by omitting
the nonlinear terms in these equations. Finally, in § 6 a discussion of our results is
presented.

2. Mathematical formulation
We adopt a Cartesian coordinate system whose origin is located on the centreline

of the channel. The coordinates x∗, y∗ and z∗ represent the distances in the stream-
wise, transverse and cross-channel directions respectively where a star (∗) denotes a
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Figure 1. Configuration of the channel in non-dimensional coordinates.

dimensional variable. The following dimensionless variables are adopted:

x =
x∗

L
, u =

u∗

V
, p =

p∗

ρV 2
, t = t∗

V

L
, µ =

µ∗

M
, T = 2

(
T ∗ − Tl
Tu − Tl

)
, (1)

where L, ρ, M, Tu and Tl denote half the channel width, constant density, viscosity at
z∗ = −L, temperature at z∗ = L and temperature at z∗ = −L respectively. We choose
the velocity scale V = JL2/2M, where −J (J > 0) is the constant imposed pressure
gradient along the channel in the positive x-direction. An illustration of the physical
configuration is provided in figure 1. With this choice of dimensions our problem is
governed by the non-dimensional Navier–Stokes and heat equations given by

∂u

∂t
+ u · ∇u = −∇p+

1

R

{
µ(T )∇2u+ µ′(T ) [2(∇T · ∇)u+ ∇T × (∇× u)]} , (2)

∇ · u = 0, (3)

∂T

∂t
+ u · ∇T =

1

Pe
∇2T , (4)

subject to the following boundary conditions representing no-slip and fixed tempera-
ture at the channel walls:

u(z = ±1) = 0, T (z = −1) = 0, T (z = 1) = 2. (5)

In equations (2)–(4) R = LVρ/M is the Reynolds number and Pe = RPr is the Péclet
number, where Pr = M/ρκ is the Prandtl number. We shall also make use of

R =
R(

1
2

∫ 2

0

µ(T )dT

)2
,

which represents a Reynolds number based on average viscosity in the chan-
nel. A basic-state solution of the form u(x, y, z, t) = u0(z)i, p(x, y, z, t) = p0(x),
T (x, y, z, t) = T0(z) is sought, where we define the unit vectors i, j and k in the
x-, y- and z-directions respectively. The boundary conditions (5) become

u0(±1) = 0, T0(−1) = 0, T0(1) = 2. (6)
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The basic-state temperature T0 = 1 + z is readily obtained and we are left to solve

R
dp0

dx
=

d

dz

(
µ(T0)

du0

dz

)
= −2. (7)

The general solution to equation (7) is given by

u0(z) = (A− 2z)F(z) + 2

∫ z

−1

F(r) dr,

where

A =
2

F(1)
(F(1)−

∫ 1

−1

F(r) dr)

and

F(z) =

∫ z

−1

dr

µ(T0(r))
,

for µ(T (z)) for which F(z) and
∫ z
−1
F(r) dr exist. The present study considers two

viscosity models: µ(T ) = e−K1T , for which

u0(z) = − 2

K1

[
1 + cothK1 + (z − cothK1)e

K1(1+z)
]
, (8)

and µ(T ) = 1−K2T (where we require K2 <
1
2

so that µ(T ) > 0 everywhere) for which

u0(z) = − 2

K2

[
−2 log

[
(1− 2K2)/(1−K2 (1 + z))

]
log (1− 2K2)

+ 1− z
]
. (9)

These viscosity models, which we label 1 and 2 respectively, correspond to viscosity
models 1 and 2 of Wall & Wilson’s (1996) study. For both these models when Ki > 0,
i = 1, 2, viscosity monotonically decreases across the channel and the basic flow skews
towards the hot wall (z = 1), whereas when Ki < 0, i = 1, 2, viscosity monotonically
increases across the channel and the basic flow skews towards the cold wall (z = −1).
When Ki = 0, i = 1, 2, the basic flow is given by the isothermal plane Poiseuille flow.
Illustrations of these basic states may be found in figure 4 as well as in Wall & Wilson
(1996) and Wall (1996).

We seek a solution to the governing equations (2)–(4) subject to the boundary
conditions (5) in the form

u = u0 + û, p = p0 + p̂, T = T0 + T̂ ,

and so we are left to solve

∂û

∂t
+ u0 · ∇û+ û · ∇u0 + û · ∇û = −∇p̂+

1

R

{
µD(T0, T̂ )∇2u0 + µ(T0 + T̂ )∇2û

+ µ′(T0 + T̂ )[2(∇T0 · ∇û+ ∇T̂ · ∇u0 + ∇T̂ · ∇û) + ∇T0 × (∇× û)
+ ∇T̂ × (∇× u0) + ∇T̂ × (∇× û)] + µ′D(T0, T̂ ) [2∇T0 · ∇u0 + ∇T0 × (∇× u0)]

}
,

(10)

∇ · û = 0, (11)

∂T̂

∂t
+ u0 · ∇T̂ + û · ∇T0 + û · ∇T̂ =

1

Pe
∇2T̂ , (12)
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subject to

û(z = ±1) = 0, T̂ (z = ±1) = 0, (13)

where µD(T0, T̂ ) = µ(T0 + T̂ )−µ(T0) and µ′D(T0, T̂ ) = µ′(T0 + T̂ )−µ′(T0). The present
study will only consider nonlinear solutions in the limit as Pe → 0 for R held constant.
In this case, if we insist that T̂ is bounded in the limit as x, y → ±∞, we have T̂ ≡ 0.
Thus we are left to solve

∂û

∂t
+ u0 · ∇û+ û · ∇u0 + û · ∇û

= −∇p̂+
1

R

{
µ(T0)∇2û+ µ′(T0) [2∇T0 · ∇û+ ∇T0 × (∇× û)]} , (14)

∇ · û = 0. (15)

We decompose the velocity disturbance û according to

û = Ǔ(z, t)i + ǔ, (16)

where Ǔ(z, t) represents the x–y average of û in the x-direction. We further decompose
the solenoidal fluctuating part, ǔ, of û into poloidal and toroidal parts so that the
incompressibility condition (15) is automatically satisfied,

ǔ = ∇× (∇× φk) + ∇× ψk. (17)

Substituting expressions (16) and (17) into equations (14) for û and applying the
operators k · ∇× (∇× and k · ∇× we obtain

∂(∇2∆2φ)

∂t
+ U∇2∆2φx − ∂2U

∂z2
∆2φx + k · ∇× (∇× ǔ · ∇ǔ)

=
1

R

{
µ(T0)∇4∆2φ+ 2µ′(T0)

dT0

dz
∇2∆2φz

+

(
µ′(T0)

d2T0

dz2
+ µ′′(T0)

(
dT0

dz

)2
)

(∆2φzz − ∆4φ)

}
, (18)

∂(∆2ψ)

∂t
+U∆2ψx−∂U

∂z
∆2φy−k·∇×ǔ·∇ǔ =

1

R

{
µ(T0)∇2∆2ψ + µ′(T0)

dT0

dz
∆2ψz

}
, (19)

subject to

ψ(±1) = φ(±1) =
∂φ

∂z

∣∣∣∣
z=−1

=
∂φ

∂z

∣∣∣∣
z=1

= 0, (20)

where U = u0(z) + Ǔ(z, t) is the mean flow and ∆2 is the two-dimensional Laplacian,
∆2 = ∂2/∂x2 + ∂2/∂y2.

3. Linear stability

We retain the temperature perturbation, T̂ , in equations (10)–(12) in order to
compare with the results of Wall & Wilson (1996) who considered non-zero values
of Pe for the linear problem. In fact, Wall & Wilson (1996) found the linear primary
eigenvalues to be insensitive to changes in the value of Pe, as is discussed in § 3.2. We
neglect terms involving products of the disturbance, and also the mean flow distortion,
Ǔ, in equation (16) since we are considering infinitesimally small disturbances. As
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shown by Wall (1996) for example, it is easily shown that Squire’s theorem for the
isothermal problem, which ensures that it is sufficient to consider two-dimensional
disturbances, may be extended to the thermal problem. In the context of the present
problem, application of Squire’s theorem means we may proceed with ψ ≡ 0. Seeking
solutions in the normal temporal-mode form

φ = φ(z)eiα(x−ct), (21)

where we assume α is real and non-negative without loss of generality, we are left to
solve a linear differential system of the form

i

R

[
µ(T0)(φ

(4) − 2α2φ′′ + α4φ) + µ′(T0)(D1φ+ E1T ) + µ′′(T0)(D2φ+ E2T )

+ µ′′′(T0)u
′
0T
′2
0 T
]

= α(c− u0)(φ
′′ − α2φ) + αφu′′0 , (22)

iα(u0 − c)T − iαT ′0φ =
1

Pe
(T ′′ − α2T ), (23)

subject to the boundary conditions

φ(z = ±1) = φ′(z = ±1) = 0, (24)

where the operators D1, D2, E1 and E2 may be found in Wall & Wilson (1996). Equa-
tions (22) and (23) subject to boundary conditions (24) form a linear differential eigen-
value problem for the wave speed, c, as a function of the wavenumber, α, R and Pe.

3.1. Numerical method

The majority of the linear stability results presented here are taken from Wall &
Wilson (1996). However, some additional results were required and so the following
numerical method was developed. We expand the eigenfunction as a Chebyschev
series,

φ(z) =

∞∑
k= 0

ak(1− z2)2Tk(z), T (z) =

∞∑
k= 0

bk(1− z2)Tk(z), (25)

where Tk(z) = cos(k arccos (z)) is the kth Chebyschev polynomial and the factors
(1− z2)2 and (1− z2) ensure that the boundary conditions are automatically satisfied.
To obtain a numerical solution using the pseudospectral method we truncate the
summation in the expansions (25) at k = N and evaluate equations (22) and (23) at
the N + 1 (internal) collocation points

zi = cos
iπ

N + 2
, i = 1, . . . , N + 1. (26)

We are left to solve a set of 2(N + 1) equations for the unknown complex coefficients
ak and bk which poses a generalized algebraic eigenvalue problem for c. We solve
this eigenvalue problem using the QZ algorithm which is accomplished using NAG
routine F02GJF. Calculations were made on the Sun Sparc 20 workstation and a
single evaluation of the eigenvalue spectrum when N = 60 took around 8 seconds. For
the isothermal problem when R = 104 and α = 1, we obtain c = 0.237526488820 +
0.003739670623i when N = 89 in excellent agreement with previous authors, for
example Orszag (1971) obtained c = 0.23752649+0.00373967i±10−8(1+i). We found
convergence for viscosity model 2 to be slower in the limit as K2 → 1

2
in accordance

with the numerical difficulty encountered by Wall & Wilson (1996) in this limit.



8 D. P. Wall and M. Nagata

4000

3000

2000

1000

0

–1000

–0.4 –0.2 0 0.2 0.4

(1)

(4)

(2)

b = 0.01

0.1
0.5

b = 0.5

(2)

(1) (4)

0.1

0.01

Rfc
– R0

fc

K0

Figure 2. Rfc −Rf0
c plotted as a function of K0 when Pe = 1 for the four different viscosity models

(1)–(4). Schäfer & Herwig’s (1993) asymptotic results are shown by the dashed line.

3.2. Results

Wall & Wilson (1996) solved the problem given by equations (22) and (23) subject to
boundary conditions (24) numerically using a high-order finite-difference technique
on an irregular grid allied with the QZ algorithm. In addition to the two viscosity
models of the present study, Wall & Wilson (1996) also considered the models
µ(T ) = 1 + b(1 − eK3T ) and µ(T ) = Ce(K4T+F)−1

, henceforth labelled models 3 and
4 respectively. These viscosity models are also monotonic decreasing or increasing
functions of temperature when Ki > 0 or Ki < 0, i = 3, 4, respectively, where F =
0.16393, C = e−1/F and b > 0. Wall & Wilson (1996) found the instability mechanism
of the thermal problem to be similar to that of the isothermal problem, with Reynolds
stresses peaking close to the location of critical layers. They found, however, that
for the thermal case there is a larger transfer of energy from the basic flow to the
disturbance in the half of the channel into which the basic flow has deflected. In
figure 2 we plot the behaviour of the change in the critical Reynolds number due
to heating, Rfc − Rf0

c , against K0 = −µ′(0) when Pe = 1. We have introduced the
Reynolds number based on flux,

Rf =
1

2

∫ 1

−1

u0(z) dz R,

in order to compare results with those of Schäfer & Herwig’s (1993) asymptotic study
in the limit as K0 → 0 which are also plotted. The critical Reynolds number, Rc,
represents the largest Reynolds number the basic flow may have while retaining its
laminar form according to the linear theory. The symbol Rf

0
c = 3848.1 denotes the

value of the isothermal critical Reynolds number based on flux. This figure shows some
perhaps unexpected results – for instance we have a situation where one flow whose
viscosity monotonically decreases across the channel may be stabilized by heating
(for example viscosity model 2) whereas another flow whose viscosity monotonically
decreases across the channel is found to be always destabilized by heating (for example
model 1). Wall & Wilson (1996) proposed an explanation of their results in terms
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of three physical effects which they labelled bulk effects, velocity-profile shape effects
and thin-layer effects.

Bulk effects describe the stabilization or destabilization of a flow that occurs when
a fluid’s viscosity is uniformly increased or decreased respectively. Since there is
some change in average viscosity included in the non-uniform changes in viscosity for
changing values of K0, this effect is therefore stabilizing when K0 < 0 and destabilizing
when K0 > 0. The bulk effect alone would therefore suggest a monotonic decreasing
relationship of Rfc with K0 and the exceptions to this relationship must be due to other
effects. In fact the bulk effect is easily filtered out of the results by plotting instead
Rc against K0 where values of K0(Ki), i = 2, . . . , 4, for each value of Ki, i = 2, . . . , 4,
are found such that ∫ 2

0

µ(T ,K0(Ki)) dT =

∫ 2

0

e−K0TdT , (27)

that is for a given value of K0 the average viscosity of all models is the same. This
scaling was undertaken by Wall & Wilson (1996), and their figure 15 is replotted in
figure 3. Evidently all the Rc curves are flat in the neighbourhood of K0 = 0 which
suggests that bulk effects predominate in the limit as K0, K0 → 0 in agreement with
the monotonic decreasing relationship of Rc with K0 found by Schäfer & Herwig
(1993) in the limit K0 → 0.

Velocity-profile shape effects describe the stabilization that occurs when a symmetric
basic state becomes skewed (see for example the study by Potter & Smith (1968). This
shape effect is thus stabilizing for both positive and negative K0.

The third effect proposed to be relevant to the linear stability problem is an effect
related to the formation of thin layers of fluid near a channel wall of differing viscosity
to the fluid in the rest of the channel. Wall & Wilson’s (1996) results suggested that the
formation of a thin-layer of less viscous fluid adjacent to a channel wall stabilizes the
flow for the present problem and vice versa. An illustration of these effects in relation
to the linear problem may be found in Wall & Wilson (1996). We also note that
Wall & Wilson (1996) found the linear stability characteristics of the flow to be only
weakly dependent on the value of Pe in the sense that the eigenvalue spectrum was
relatively insensitive to changes in the value of this parameter. Values of Rc typically
changed by only a few percent for 0 6 Pe 6 105 for the values of K0 considered.

4. Two-dimensional nonlinear equilibrium solutions

The previous section describes how the basic flow loses stability to a two-
dimensional disturbance at finite values of R. In order to more fully understand
the transition process, we seek to calculate the nonlinear secondary flows which bi-
furcate from the basic flows. Accordingly we shall seek to calculate two-dimensional
solutions (i.e. with ψ ≡ 0) to equation (18) with the nonlinear terms included. The
nonlinear terms not explicitly expressed in these equations are given in the Appendix
for reference. Since the linear solutions presented by Wall & Wilson (1996) find that
cR1 6= 0 on the linear marginal curves, we anticipate a Hopf bifurcation there, and
accordingly seek a periodic solution in the travelling-wave form

φ(x, z, t) =

∞∑
l= 0

∞∑
m=−∞

al,meimα(x−ct)Tl(z)(1− z2)2, (28)
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Figure 3. Rc − R0

c plotted as a function of K0 when Pe = 1 for the four different viscosity
models (1)–(4).

where al,m is complex and c is the (unknown) real wave speed. We decompose the
mean flow distortion according to

Ǔ(z, t) =

∞∑
k= 0

CkTk(z)(1− z2), (29)

where the coefficients Ck are real. Since φ is real we have that φ = φ, where Z denotes
the complex conjugate of Z , so we have

∞∑
l= 0

−∞∑
m=∞

al,−meimα(x−ct)Tl(z)(1− z2)2 =

∞∑
l= 0

∞∑
m=−∞

al,meimα(x−ct)Tl(z)(1− z2)2,

and we may truncate the sum in the expression (28) to positive values of m and
calculate the coefficients âl,m for negative values of m a posteriori using the relationships

aRl,−m = aRl,m, aIl,−m = −aIl,m.
Since the basic flows derived above are not symmetrical about z = 0, in general we
cannot further reduce the number of unknowns by symmetry arguments as is the case
with symmetric basic flows, see Ehrenstein & Koch (1991) for example. We choose
t = t0 so that the imaginary part of a1,2e

−2iαct0 , for example, is zero and introduce the
constants

âl,m = al,me−imαct0 .

Taking the x−y average of the x-component of equation (14), we obtain the following
equation for Ǔ:

∂Ǔ

∂t
− αβ

4π2

∂

∂z

∫ 2π/α

0

∫ 2π/β

0

∆2φ(φxz+ψy) dx dy=
1

R

(
µ(T0)

∂2Ǔ

∂z2
+µ′(T0)

dT0

dz

∂Ǔ

∂z

)
. (30)
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Figure 4. Basic states (—) and the corresponding upper-branch mean flows (- - -) for µ(T ) = e−K1T

for the values of K1 indicated when R = 11 000 and α = 1.05 with L = 39 and M = 4.

Nonlinear algebraic equations are obtained for the unknown coefficients, âl,m, by
applying the operator

αβ

4π2

∫ 2π/β

0

dy

∫ 2π/α

0

dx eiγαx

to equation (18). In order to compute two-dimensional nonlinear equilibrium solutions
for the present problem, our task therefore is to solve equations (18) and (30) subject
to the boundary conditions (24) and Ǔ(z = ±1) = 0.

4.1. Numerical method

In order to obtain numerical solutions to this problem we must truncate the series in
expression (28) at l = N, sum m from 0 to M, and truncate the series in expression
(29) at k = K , where in practice we always used K = N. We substitute these truncated
series for φ and Ǔ in equations (18) and (30) and apply a pseudospectral method by
evaluating the resultant expressions at the N + 1 internal collocation points given by
equation (26). This leads to (N + 1)(2M + 1) real nonlinear equations

Fn = DnmXm +HnmkXmXk = 0, n = 1, . . . , (N + 1)(2M + 1), (31)

where the summation convention has been used and Xm, m = 1, . . . , (N + 1)(2M + 1),
represents the solution vector containing the 2(N+ 1)M unknown real and imaginary
parts of the coefficients âl,m and the N + 1 unknown real coefficients Ck , k = 0, . . . N.
We solve the nonlinear algebraic system of equations (31) using the Newton–Raphson
iteration method. We obtain the values â0 1 = −0.0680754, c = 0.2901557 and â0 1 =
−0.0591568, c = 0.3026123 when M = 2, N = 17 and M = 6, N = 43 respectively
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K1 I0 I1

−0.4 0.8182 0.8724
−0.3 0.8605 0.9142
−0.2 0.9048 0.9477
−0.1 0.9512 0.9758

0 1.0000 1.0000
0.1 1.0513 1.0214
0.2 1.1053 1.0403
0.3 1.1622 1.0561
0.4 1.2222 1.0720

Table 1. Measure of the skewing of basic states, I0, and corresponding upper-branch secondary
flows, I1, when µ(T ) = e−K1T , R = 11000 and α = 1.05.

for the upper branch of the isothermal problem when R = 5600 and α = 1.1. Using
M = 2 and N + 1 = 15 Ehrenstein & Koch (1991) solved this problem on half the
channel with appropriate symmetry conditions along the centreline of the channel
and obtained c = 0.2878. We define the upper and lower branches of the bifurcation
curve below. In most of the subsequent work the truncation level N = 29, M = 4 was
adopted. A single iteration of the Newton–Raphson method takes approximately 1
min and 40 s on the SUN SPARC 20 with this truncation level.

4.2. Results

One quantity of transitional flows which is of engineering interest is the mean flow,
u0(z) + Ǔ(z). In figure 4 we plot basic states corresponding to viscosity model 1
for various values of K1 and, fixing R and α, we have also plotted mean flows
corresponding to the nonlinear equilibrium states for the same values of K1. The level
of skewing of the mean flow, as for the basic states, increases with increasing K1. This
is confirmed in table 1 where we display values of

I1 =

∫ 1

0

u0 + Ǔdz∫ 0

−1

u0 + Ǔdz

for the profiles in figure 4; clearly the larger the deviation of I1 from unity the greater
the skewing. For reference we also give the corresponding values of the basic-state
skew factor

I0 =

∫ 1

0

u0 dz∫ 0

−1

u0 dz

;

clearly the corresponding secondary mean flows are less skewed at each value of K1.
In figure 5(a) we plot the L2 norm of the âl,m amplitude coefficients in parameter

Figure 5. (a) L2(â0,1, . . . , âN,M), (b) â0,1, (c) â1,1 and (d) c for the nonlinear periodic equilibrium states
bifurcating from the laminar states at the critical point in each case for (—) µ(T ) = e−K1T and
(- - -) µ(T ) = 1−K2T . The values of K2 are chosen so that the average viscosities of both viscosity
models are the same for each value of K0 indicated. In (d) we also plot the relationship of c with R
for the linear stability problem near the bifurcation point (�).
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Figure 6. Rc plotted against K0 for µ(T ) = 1−K2T (—) and µ(T ) = e−K1T (- - -) together with
values of RNLc for µ(T ) = 1−K2T (�) and µ(T ) = e−K1T (+).

space, against values of R, for both viscosity models for various values of K0. This
quantity gives a measure of the amplitude of the disturbance. All the nonlinear so-
lution branches presented in this study bifurcate from the linear critical point where
L2(â0,1, . . . , âN,M) = 0. Each basic state clearly loses stability in a subcritical bifurca-
tion. In each case, as we move away from the bifurcation point, R decreases as the
amplitude of the nonlinear solution increases until a turning point is reached, and
then R increases as the amplitude of the nonlinear solution increases. We denote the
branch of the solution between the bifurcation point and the turning point the lower
branch and the remainder of the solution branch the upper branch. The turning point
may be viewed as a nonlinear critical point since it represents the smallest value of
R = RNLc (when α = αc) for which a secondary flow (or primary bifurcation solution)
can exist. Various values of RNLc are shown plotted in figure 6 for the two viscosity
models where we also plot the corresponding linear critical Reynolds numbers, Rc.
Clearly the qualitative differences in Rc between the two viscosity models are not
repeated in the values of RNLc .

Wall & Wilson (1996) noted for the linear primary instability problem that the
values of Rc did not coincide for different viscosity models parameterized by the
same value of K0. They therefore deduced that the bulk effect (i.e. changes in average
viscosity) was not sufficient by itself to explain their results. This property of the
linear problem is shown in figure 5(a) by the different bifurcation points on the
R-axis. Furthermore, the present results show that the periodic transitional flows
computed here for different viscosity models for the same K0 do not converge with
movement away from the bifurcation point. For a given sign of K0, the divergence of
the two results is larger the larger the value of |K0|, while, for a given value of |K0|,
the divergence appears to be larger for positive values of K0, which was also found to
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Figure 7. The streamfunctions (a) φx, (b) φx +
∫
Ǔdz and (c) φx +

∫
Ǔ + u0dz for (i) lower-branch

and (ii) upper-branch nonlinear solutions when R = 5000, α = 1.12 and K2 = 0. The numerical
truncation level N = 29 and M = 2 was adopted in each case.

be the case for the linear primary critical point results. We also note that, for a given
value of K0 and for values of R for which solutions for both viscosity models exist, the
amplitude of the nonlinear solution is largest for viscosity model 2 for lower-branch
solutions while the situation is reversed at the turning point. However, there then
appears to be a single intersection point where the upper branches of the two solution
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curves meet beyond which the nonlinear solution corresponding to viscosity model
2 once again has the larger amplitude for each value of R. In figure 5(b) we plot
the leading-order even coefficient â1,0 against R for reference. Also, since symmetry

about z = 0 is lost for non-zero values of K0 it is also of interest to display the
corresponding plots of the leading-order odd coefficient, â1,1, which are shown in
figure 5(c). For the isothermal problem this coefficient is identically zero, while for the
thermal problem it takes the opposite sign to that of K0. The subcritical behaviour
in both these figures is again clearly shown. The wave speeds corresponding to the
nonlinear solutions plotted in figure 5(a–c) are plotted in figure 5(d). It should be
noted that a maximum for c in general occurs at R > RNLc .

A visualization of the nonlinear secondary flow is provided in figures 7 and 8, where
we plot the streamfunctions corresponding to the fluctuating part of the disturbance,
φx, the disturbance,

∫
Ǔdz + φx, and the total flow, (

∫
Ǔ + u0)dz + φx, for K2 = 0

and K2 = 0.3166 respectively. With these values of K2 the average viscosity of the
corresponding basic states is identical to that of viscosity model 1 when K1 = 0 and
0.4 respectively. Viewing figures 7(i)(a) and 7(ii)(a), it is clear that the fluctuating part
of the disturbance on both upper and lower branches is characterized by a sequence
of transverse vortices whose centres lie along z = 0. When the streamfunction,

∫
Ǔdz,

of the flow distortion is added to φx the combination creates a set of wavy streamlines
meandering between a sequence of triangular-shaped vortices whose centres lie either
side of z = 0 as may be seen in figures 7(i)(b) and 7(ii)(b). These figures may be
compared with figure 7 of Ehrenstein & Koch’s (1991) study. Clearly the

∫
Ǔdz term

is relatively more dominant for the upper-branch solution and severely diminishes the
triangular-shaped vortices. With regard to the streamlines for the total flow shown in
figures 7(i)(c) and 7(ii)(c), it is clear that the straight streamlines for plane Poiseuille
flow are modified for both solution branches by the introduction of a waviness, with
this waviness being much larger for the upper-branch solution as may have been
expected due to the higher amplitude of the nonlinear solution there.

With regard to figure 8(i)(a), it may be seen that the introduction of thermal effects
has not destroyed the transverse vortical pattern found for φx for the isothermal
problem, but for K2 > 0 it has shifted the vortices towards the hot wall, z = 1.
Interestingly, this shift appears to be larger for the lower-branch solutions shown
in figure 8(i)(a) than for the upper-branch solutions. The pattern of streamlines
corresponding to the total disturbance for the thermal problem shown in figures 8(i)(b)
and 8(ii)(b) is similar to that of the isothermal problem, with again the vortices shifted
towards the hot wall. Indeed for the example shown in figure 8(i)(b), the set of vortices
observed to lie in the cold side of the channel for the isothermal problem now lie above
the centreline. The streamlines corresponding to the total flow shown in figures 8(i)(c)
and 8(ii)(c) take the same wavy form observed for the isothermal problem, with again
the upper-branch streamlines exhibiting a larger-amplitude modification from the
basic state. For the case when K2 < 0, the change in the streamline patterns caused
by the introduction of heating are of the same nature as those for K2 > 0 and so are
not shown here. The vortices are shifted towards the cold wall, z = −1, in this case.
The corresponding streamfunction patterns for viscosity model 1 are qualitatively
similar and so are not shown here.

5. Stability of the secondary flow
In the previous section we computed the periodic secondary flows which arise from

a bifurcation of the basic states at marginal stability. It is of interest to determine
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Figure 8. As figure 7 but when R = 4000, α = 0.985 and K2 = 0.3166 (K0 = 0.4). The numerical
truncation level N = 29 and M = 4 was adopted in each case.

the linear stability of these nonlinear secondary flows in order to give information
on which of these flows may be observed in practice. In contrast to the problem of
determining the linear stability of the primary flow, Squire’s theorem does not apply
to the secondary stability problem, and so we must consider a three-dimensional
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disturbance, u = ũ(x, y, z, t) and p = p̃(x, y, z, t). The total flow

u = U0i + û+ ũ, p = p0 + p̂+ p̃, T = T0 + T̂ + T̃ ,

must satisfy the governing equations (2)–(4), and so

∂ũ

∂t
+ u0 · ∇ũ+ û · ∇ũ+ ũ · ∇u0 + ũ · ∇û+ ũ · ∇ũ

= −∇p̃+
1

R

{
µ∇2ũ+ µDD∇2(u0 + û) +

dµ

dT

[
2(∇T0 · ∇ũ+ ∇T̂ · ∇ũ

+∇T̃ · ∇u0 + ∇T̃ · ∇û+ ∇T̃ · ∇ũ) + ∇T0 × (∇× ũ) + ∇T̂ × (∇× ũ)
+∇T̃ × (∇× u0) + ∇T̃ × (∇× û) + ∇T̃ × (∇× ũ)]+ µ′DD[2(∇T0 · ∇(u0 + û)

+∇T̂ · ∇(u0 + û)) + ∇(T0 + T̂ )× (∇× (u0 + û))]

}
, (32)

∇ · ũ = 0, (33)

∂T̃

∂t
+ u0 · ∇T̃ + û · ∇T̃ + ũ · ∇T0 + ũ · ∇T̂ + ũ · ∇T̃ =

1

Pe
∇2T̃ , (34)

subject to the boundary conditions

ũ(z = ±1) = 0, T̃ (z = ±1) = 0, (35)

where µDD = µ(T0 + T̂ + T̃ )− µ(T0 + T̂ ), µ′DD = µ′(T0 + T̂ + T̃ )− µ′(T0 + T̂ ) and µ

and dµ/dT are evaluated at T = T0 + T̂ + T̃ . Again examining the limit as Pe → 0

for fixed R, we have T̂ ≡ T̃ ≡ 0 and we are left to solve

∂ũ

∂t
+Ui · ∇ũ+ ũ · ∇Ui + ǔ · ∇ũ+ ũ · ∇ǔ+ ũ · ∇ũ

= −∇p̃+
1

R

{
µ∇2ũ+

dµ

dT
[2∇T0 · ∇ũ+ ∇T0 × (∇× ũ)]

}
, (36)

∇ · ũ = 0, (37)

subject to ũ(z = ±1) = 0, where Ui = u0 + Ǔi. Since the disturbance is solenoidal we
may decompose it according to

ũ = ∇× (∇× φ̃k) + ∇× ψ̃k,
so that equation (37) is automatically satisfied, and apply the operators k · ∇× and
k · ∇× (∇× as before. It may be noted that, with the exception of the terms

ǔ · ∇ũ+ ũ · ∇ǔ, (38)

equation (36) is trivially obtained from equation (14) by replacing u0 by Ui and
substituting u and p for û and p̂ respectively. The terms (38) represent the interaction
between the fluctuating part of the secondary flow, ǔ, and the disturbance, ũ. Since
we are concerned here with the linear stability of the secondary flow, the ũ · ∇ũ term
in equation (36) is discarded, and we seek solutions in the form

φ̃ =

∞∑
l= 0

m=∞∑
m=−∞

ãl,meimα(x−ct)+id(x−ct)+iby+σtTl(z)(1− z2)2, (39)
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ψ̃ =

∞∑
l= 0

m=∞∑
m=−∞

b̃l,meimα(x−ct)+id(x−ct)+iby+σtTl(z)(1− z2), (40)

where d and b are real Floquet parameters and σ is the disturbance growth rate.
For given values of R, α, K1 or K2, d and b; if σR1 > 0 the flow is unstable, while if
σR1 < 0 the flow is stable, where σRi and σIi denote the real and imaginary parts of
the eigenvalue with the ith largest real part. If σR1 = 0 the flow is neutrally stable and
these points offer a possible bifurcation point for the tertiary flow. We note that

φ̃(b, d+ α) =

∞∑
l= 0

∞∑
m=−∞

ãl,mei(x−ct)[(m+1)α+d]eiby+σtTl(z)(1− z2)2, (41)

so that

φ̃(b, d+ α) =

∞∑
l= 0

∞∑
m=−∞

ãl,mei(x−ct)[mα+d]eiby+σtTl(z)(1− z2)2 = φ̃(b, d). (42)

The same property holds for ψ̃, and so the secondary perturbation is periodic in the
Floquet parameter d with period α. It is therefore necessary and sufficient to examine
the semi-infinite strip 0 6 d < α in Floquet parameter space at each point on the
secondary-flow bifurcation branch in order to determine the stability of the secondary
flow at that point. We substitute into the two equations derived from applying k · ∇×
and k · ∇ × (∇× to equations (36) for φ̃ and ψ̃ using expressions (39) and (40) and
introduce

˜̃al,m = ãl,me−ict(mα+d), (43)

˜̃bl,m = b̃l,me−ict(mα+d). (44)

Finally we apply the operator

αβ

4π2
e−σt

∫ 2π/β

0

dy e−iby ·
∫ 2π/α

0

dx e−i{γαx+dx},

at the time t = t0 defined in § 4.

5.1. Numerical method

Upon varying γ over the values −M, −M + 1, . . . ,M and evaluating the resultant
equations at the N+ 1 internal collocation points given by equation (26), we obtain a
system of 2(N + 1)(2M + 1) equations which form a generalized algebraic eigenvalue
problem of the form

Ax = σBx,

for the eigenvalues σ with eigenvector

(˜̃a0,−M, ˜̃a0,−M+1, . . . , ˜̃a0,M, ˜̃a1,−M, . . . , ˜̃aN,M,
˜̃b0,−M, . . . , ˜̃bN,M).

We solve this eigenvalue problem using the QZ algorithm implemented by using
NAG routine F02GJF. Table 2 illustrates the convergence and modal dependence of
the scheme; for most of our results we used N = 29 and M = 4.

5.2. Results

In figure 9 we plot contours of constant σR1 in the (d, b)-plane when K2 = −0.53 and
α = αc at various points along the bifurcation branch. All the secondary flows pre-
sented in § 4 are unstable for some region in the (d, b)-plane, and so none of these flows
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N M O σRO σIO N M O σRO σIO

29 4 1 0.129570 O(10−14) 39 5 1 0.131008 O(10−13)
2 0.129154 O(10−14) 2 0.130515 O(10−14)
3 0.111416 0.181840 3 0.115331 0.186255
4 0.111416 −0.181840 4 0.115331 −0.186255

29 5 1 0.130578 O(10−14) 39 6 1 0.130325 O(10−13)
2 0.130086 O(10−13) 2 0.129853 O(10−14)
3 0.114291 0.185719 3 0.114653 −0.185289
4 0.114291 −0.185719 4 0.114653 0.185289

29 6 1 0.129471 O(10−13) 49 4 1 0.130222 O(10−13)
2 0.129047 O(10−14) 2 0.129792 O(10−13)
3 0.113635 0.183290 3 0.112248 0.182874
4 0.113635 −0.183290 4 0.112248 −0.182874

39 4 1 0.130217 O(10−13) 49 5 1 0.131020 O(10−14)
2 0.129787 O(10−14) 2 0.130526 O(10−13)
3 0.112246 0.182867 3 0.115329 −0.186289
4 0.112246 −0.182867 4 0.115329 0.186289

Table 2. Convergence of the four most unstable superharmonic linear secondary disturbances for
various values of N and M for an upper-branch isothermal nonlinear equilibrium solution when
R = 5000, α = α0

c and b = 2.5.

may be expected to exist in equilibrium in practice since the secondary disturbance
will in general be composed of all wavelengths. However, a study of the stability
of these flows is nonetheless important, since it determines where the tertiary flows
may bifurcate from, and yields some information on the nature of these bifurcating
flows. In figure 9 some possible bifurcation points for the tertiary flow are shown
by the σR1 = 0 contours. As table 2 demonstrates for the isothermal case, it is clear
from this figure that typical growth rates of the secondary disturbance are O(10−1)
for the thermal case, and so we would anticipate a rapid growth of these disturbances
similar to that found for the isothermal flow. Note that the contours are not perfectly
symmetrical about d = α/2 because we have truncated the summation in expressions
(39) and (40) at finite M. Our results suggest, however, that the most unstable mode
is always either the superharmonic (d = 0) or subharmonic (d = α/2) mode.

In figures 10 and 11 we have plotted the real parts of the leading-order super- and
subharmonic modes together with the imaginary parts of the two most unstable super-
and subharmonic modes against b for secondary flows corresponding to a positive and
negative value of K2. The (a) parts of these figures permit the identification of possible
bifurcation points for the tertiary flow, while the (b) parts give information on what
type of flow this tertiary flow will be. For example, from figure 10 we observe that the
leading-order superharmonic mode is phase locked for b up to approximately 12.5,
where there is a coincidence of superharmonic modes beyond which the two most un-
stable superharmonic modes are given by a complex conjugate pair. We would there-
fore anticipate a quasi-periodic flow to bifurcate from the point at b ≈ 21.5 where these
modes cross the σR = 0 axis. A similar transition from a single phase-locked mode to
a complex-conjugate pair of superharmonic modes may be seen in figure 11 at b ≈ 9.3.
Clearly for some values of b the most unstable mode is superharmonic while for other
values of b it is subharmonic. We note that all modes are ultimately damped as b
increases (the wavelength of the disturbance in the spanwise direction decreases) and
the last mode to be damped is always a phase-locked subharmonic mode for the cases
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Figure 9. Contours of equal σR1 × 103 for (a) and (b) lower branch R = 16000, (c) lower branch
R = 12050 and (d) upper branch R = 17000 when α = αc = 0.998 and µ(T ) = 1 − K2T with
K2 = −0.5319.

we have considered. The value of b at which this latter stabilization occurs is larger
the further along a particular bifurcation curve the secondary flow is taken from.

6. Summary
In this study we have computed the periodic secondary flows of fluid with

temperature-dependent viscosity through a parallel-sided channel with fixed wall
temperatures for two different viscosity/temperature relationships. These flows arise
from a Hopf bifurcation of the basic flows at the linear critical point (α = αc, R = Rc).
We have also considered the linear stability of these secondary flows, and identified
possible bifurcation points for tertiary flows.

Our results for the isothermal problem for secondary flows bifurcating from plane
Poiseuille flow are in good agreement with those found by the previous studies of
Ehrenstein & Koch (1989, 1991). For both the thermal and isothermal problems the
bifurcation is always subcritical, with a minimum nonlinear R = RNLc (i.e. a nonlinear
critical Reynolds number) being reached and thence R increasing with the amplitude
of the disturbance. The disturbance to the basic flow has wavy streamlines meandering
between a sequence of triangular-shaped vortices with this pattern skewing towards the
hot or cold wall depending on whether K1 and K2 are positive or negative respectively.
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Figure 10. Traces of (a) the real part of the leading-order superharmonic (—) and subharmonic
(- - -) eigenmodes and (b) the corresponding imaginary part of the 2 most unstable superharmonic
(most unstable (�), second most unstable (+)) and subharmonic (most unstable (�), second most
unstable (×)) eigenmodes plotted against b for µ(T ) = 1−K2T when K2 = −0.53, R = 12050 and
α = αc on the lower branch.

For both viscosity models the behaviour of RNLc with K0 is qualitatively the same,
with RNLc monotonically decreasing with increasing K0. Analysing the stability of
these flows, we found that the most unstable modes are either superharmonic or
subharmonic, with both types of modes being damped as the Floquet parameter in
the spanwise direction increases. The last mode to be damped is always a phase-locked
subharmonic mode which, at its stabilization, provides one possible bifurcation point
for tertiary flows.
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Figure 11. As figure 10 but for K2 = 0.31, R = 3500, α = αc on the upper branch.

We note that the behaviour of RNLc with K0 > 0 is clearly in contrast to the
behaviour of Rc with K0 > 0 for the two viscosity models as described by Wall &
Wilson (1996) and plotted in figure 6. They found that the basic flow corresponding
to viscosity model 1 was increasingly destabilized relative to plane Poiseuille flow
as K0 increased, while the basic flow corresponding to viscosity model 2, although
initially destabilized relative to plane Poiseuille flow, ultimately became stabilized
relative to the isothermal flow beyond a finite value of K0. In contrast, the present
nonlinear results for RNLc suggest that the form of µ(T ) is not qualitatively important
in determining the stability of the flow relative to the isothermal problem. In practice,
isothermal channel flows with a noisy background lose stability at Reynolds number
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Figure 12. Rc plotted against K0 for µ(T ) = 1−K2T (—) and µ(T ) = e−K1T (- - -) together with

values of RNLc for µ(T ) = 1−K2T (�) and µ(T ) = e−K1T (+).

much lower than Rc, as was found in the experiments of Davies & White (1928)
for example. In this situation there appears to be a bypass mechanism as described
by Morkovin (1969). The present results would suggest that the same mechanism
may occur for flows with temperature-dependent viscosity and so the qualitative
differences in Rc between the viscosity models may not occur in noisy practical
applications. In figure 12 we plot RNLc , a nonlinear critical Reynolds number based
on average viscosity defined in § 2, against K0. Interestingly, with the removal of the
bulk effect it is clear that the secondary flows corresponding to viscosity model 2 are
more stable than those corresponding to viscosity model 1. This is in the sense that

RNLc > RNLc
0

for the former model, where RNLc
0

represents the isothermal nonlinear

critical Reynolds number based on average viscosity, whereas RNLc < RNLc
0

for the
secondary flows whose viscosity is given by the latter model. We found that none of
the flows considered here was stable to all Floquet parameter pairs, (d, b), and so they
would not be expected to exist in equilibrium in practice. The order of magnitude of
growth rates of three-dimensional disturbances would suggest that the thermal flows
lose stability to a rapid growth of a three-dimensional secondary disturbance in a
similar manner to the isothermal flows.

Appendix. Nonlinear primary bifurcation terms

k · ∇× ǔ · ∇ǔ = −∆2ψ∆2φz + ∆2φy(φxzz + ψyz)− ∆2φx(φyzz − ψxz)
−∆2ψx(φxz + ψy)− (φyz − ψx)∆2ψy + ∆2φ∆2ψz, (A 1)
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k · ∇× (∇× ǔ · ∇ǔ) = (∇2φx + ψyz)
(
ψxxy − φyyxz)− (∇2φy − ψxz) (φxxyz + ψxyy

)
+(∇2φxx + ψxyz)

(
2
[
φxxz + ψxy

]− ∆2φz
)− (∇2φyy − ψxyz) (2 [ψxy − φyyz]+ ∆2φz

)
+2
[
φxyz(ψyyz − ψxxz)− ψxxψyyz − ψyyψxxz + (φxyzz + ∆2φxy)(ψyy − ψxx + 2φxyz)

]
+∆2φy(φxxyz − ψxxx) + (φxxyz + ψyyx)(φyzz − ψxz) + ∆2φx(φxyyz + ψyyy)

+(φxyyz − ψxxy)(φxzz + ψyz) + ∇2∆2φx(φxz + ψy) + ∇2∆2φy(φyz − ψx)
−∆2φ∇2∆2φz − ∆2φx(∇2φxz + ψyzz) + ∆2φy(ψxzz − ∇2φyz). (A 2)
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